Publications: Peer-reviewed journal articles (by staff)

Natural dispersal mechanisms and dispersal potential of the invasive ascidian Didemnum vexillum

31 August, 2012

Fletcher LM, Forrest BM, Bell JJ 2012. Natural dispersal mechanisms and dispersal potential of the invasive ascidian Didemnum vexillum. Biological Invasions 15(3): 627-643.


Over the past decade, several species of non-indigenous ascidians have had adverse effects on a range of coastal ecosystems, and associated industries like aquaculture. One such species, the colonial ascidian Didemnum vexillum, poses a threat to the highly-valued New Zealand green-lipped mussel industry, and there is interest in whether and to what extent its spread can be managed at a regional scale (< 100 km).

An important component in the decision-making process for managing human-mediated pathways of spread is an understanding of D. vexillum's natural dispersal potential. Here we use a weight-of-evidence approach, combining laboratory and field studies, to assess the role of natural dispersal mechanisms in the spread of D. vexillum. Under laboratory conditions, > 70 % of D. vexillum larvae remained viable and were able to settle and undergo metamorphosis successfully following an artificial delay of 2 h. Larval viability decreased with increasing delay duration, although 10 % of larvae remained viable following a 36 h delay.

 A field-based study documented larval dispersal from two discrete source populations, with recruitment consistently detected on settlement plates at 250 m from source populations at one experimental site. Exponential decay models used to predict maximum larval dispersal distances at this site indicated that dispersal greater than 250 m is theoretically possible (> 1 km in some situations). That being so, we recognise that the successful establishment and persistence of populations will depend on a wide range of processes not taken into account here.

Our findings are supported by surveillance of D. vexillum spread in the wider study region; there are a number of instances where the species established on artificial structures that were several kilometres from known source populations, at a time when intensive regional-scale management of anthropogenic vectors was underway. Collectively, our findings indicate that D. vexillum has the ability to spread further by natural dispersal than previously assumed; probably hundreds of metres to kilometres depending on the local hydrological conditions, which has important implications for the ongoing management of this pest species world-wide.