Publications: Peer-reviewed journal articles (by staff)

Neuromuscular blocking activity of pinnatoxins E, F and G

  • Hellyer S,
  • Selwood A,
  • Rhodes L,
  • and Kerr DS
15 December, 2013
CITATION

Hellyer S, Selwood A, Rhodes L, Kerr DS 2013. Neuromuscular blocking activity of pinnatoxins E, F and G. Toxicon 768: Pages 214-220.

ABSTRACT

Pinnatoxins are produced by dinoflagellates and belong to the cyclic imine family of toxins. They are fast-acting and highly toxic when administered in vivo in rodent bioassays, causing death by respiratory depression within minutes. Studies have revealed that some cyclic imine toxins cause their toxicity by antagonizing both muscle type and heteromeric and homomeric neuronal nicotinic acetylcholine receptors (nAChRs). Pinnatoxins E, F and G all display potent toxicity in in vivo bioassays, with symptoms of toxicity similar to other cyclic imine toxins. However, very little work has been done on the mechanism of action of these pinnatoxin isomers. Thus the aim of the current study was to investigate the rank order of potency and mechanism of action of pinnatoxins E, F and G. The effects of pinnatoxin E, F and G on in vitro rat hemidiaphragm preparations were investigated using twitch tension and electrophysiological techniques to determine the effects of these toxins on cholinergic transmission at the neuromuscular junction. Pinnatoxins E, F and G all produced concentration-dependent reductions in the nerve evoked twitch response of the rat hemidiaphragm, with IC50 values ranging from 11 to 53 nM and a rank order of potency of F > G > E. Only complete washout of pinnatoxin E was evident, with pinnatoxins F and G displaying slow and incomplete washout profiles. Pinnatoxins F and G also reduced the amplitudes of spontaneous miniature endplate potentials and evoked endplate potentials at the neuromuscular junction, without affecting miniature endplate potential frequency or the resting membrane potential of the muscle fibres. These results show that pinnatoxins E, F and G are all potent neuromuscular blocking agents and cause toxicity by acting as antagonists at muscle type nicotinic acetylcholine receptors.

Read more here